Dynamic resource configuration and control for

an autonomous robotic vehicle

Abhishek Kulkarni, Bryce Himebaugh and Steven D Johnson !

SCHOOL OF INFORMATICS AND COMPUTER SCIENCE !,
Indiana University
Bloomington, 47401

{adkulkar,bhimebau,sjohnson}@cs.indiana.edu

October 23, 2009

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS robotic vehicle
» Mission
» Architecture

v

ERTS software requisites
SYNCF'S
Cart component model

vVYvy VYy

Work in Progress

» platform heterogeneity
> reactive programming in limbo
» 9p on embedded network protocols

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS Mission

» Lessons learned from participation in the
Darpa Grand Challenge development
effort

» Developed for and by the participants of

introductory course on Embedded and
Real-time Systems

» Explore embedded system design through
the control of an autonomous vehicle

» Platform for local experimentation,
collaborative research and instruction

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS robotic vehicle

» EZGO® golf cart augmented
with controls
» Sensors
» GPS, compass, IMUs, vision,
joystick, laser, IR, ...
» Actuators
» VCS, steering control,
obstacle avoidance, voltage
throttle, ...
» Onboard LAN of ARM Linux
computer nodes (CNODEs)

» Networked navigation system

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS architecture

CART Electronics

WRT54GL Router GPS
Vehicle
Control Throttle
Module Voltage
(VCM)
Speed
Driver Laptop ARM Linux Pulses
Head Node

Steering System

Obstacle Detection
System

Overview of the cart’s electronics

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Steering system overview

Plllley
Arm Linux
Server
RS232 Comm Steering Wheel Steering Rack

inear Pot|

Auto/ Man

Wiper Voltage
Power Signals

Roboteq AX2850HE
Amplifier

Gear Motor ACSiuteh

v

Cart's steering system architecture

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS software requisites

flexible, modular and composable
horizontal and vertical configurability
light-weight with sufficient abstractions
sensor network architecture

platform heterogeneity

vV VvV vV vY

implicit/explicit time synchronization

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Synchronous reactive systems

Reactive systems are computer systems that
continuously react to their environment at a speed
determined by this environment.

ERTS is essentially a reactive system
timing behaviour can be formalized trivially
easier to model, design and verify

signals change only at the clock edge

vV V. v vy

no data races and hazards

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Reactive components

Component Functionality

Control Unit || Data Unit

. Data
Reactive q
Handling
Kernel
Layer
Input - Output
interfaces interfaces

» control unit

» usually implemented as a state machine

» data unit

> processes, stores or exchanges data

» example

> in a navigation system: GPS, IMUs, compass ...

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

ERTS software ecosystem

v

Operating System

» Linux, RT-Linux, QNX RTQOS, Plan 9, Inferno ...
CARTFES

» components obeying synchronous access conventions
SYNCFS

» synchronous file server

v

v

v

Experiments

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

SYNCF'S Overview

synchronous file server

modeled after a globally clocked D flip-flop
defers writes/stats to a simulated " clock edge”
MRSW model (multiple readers single writer)
RAM based, w/ double buffering

system-wide write commits

vV V. VvV vV vY

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

IN-
PUT
» facilitates buffer-based inter-component con.
communication FIG IE
» blocking stat as the synchronization element poc
» implicit CLK component
. STA-
> exports elapsed ticks through the clock file TUS]
» 800 lines of C code, uses npfs L e m
L]

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Component Framework (CARTF'S)

» obeys synchronous access conventions defined by SYNCEF'S

» components communicate with the device or with each other
> exposes files command, status, ...

» adds itself to the global SYNCES namespace explicitly

» components write only to their own status file

» uses JSON for exchanging structured data

Control Loop Code

while True:
wait_for_clock ()
read_files ()
has_requirements?()
process ()
write_files ()

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Component access flow

E=— Read data
Process

Write data

COMPONENT A

COMPONENT B

CLK _|_'1_|_'1_I_I_l_"l_f_'l_r"l_l—'l_f_'l_[_'l_l_'1_l—1

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Component Architecture

data
DRIVER image

~~(MONITOR)— — — — — — _ —

A
|

|
| file file]!
] image image :
' .

file | B | [file
mage | \ image

! COMPONENT |

—_— — m e m - = === -

CLK

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

CartFS overview

uniform component directory structure
status (_s) - output for the component

configuration (_c) - contains path to the input channels

doc (_d) - contains description of each of the status and
configuration variables

vV Vv VvV Yy

> log (-log) - contains diagnostic data
» open close operations minimized to reduce load on SYNCFS

» use seek to return to the beginning of a file

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Component interface

©OO~NOOTHE WN -

$ cat /tmp/cartfs/config/config_s
{'clock’': ['../clock', ’'clock', null],

"percent_throttle ': ['../jdriver/jdriver_s', 'percent_throttle’, 0]}

$ cat /tmp/cartfs/compass/compass_s

{'clock': 1423, 'enable': 'True’', 'heading’': 124.00}

$ cat /tmp/cartfs/jdriver/jdriver_c

{'joystick_throttle ': —0.69999999999999996, 'joystick_steering’': 0.0,
'direction’ 'Forward', ’'enable’': ’'True', ’'clock’': 1538}

$

$ cat /tmp/cartfs/jdriver/jdriver_c_d

{'enable ': 'True/False — stops reads on jdriver device',

"clock ': ’'The clock value on which this data was written.'}

$ cat /tmp/cartfs/jdriver/jdriver_s_d
{'enable ': 'True/False — stops reads on
"clock ': 'The clock value on which this

jdriver device',
data was written.'}

4th International Workshop on Plan 9

Work in Progress

» 9P on Windows

> in user space

> allows interacting components to be written in Windows

» facilitates collaborative research

> makes you unhappy ®
1 | device = CreateFile (DOKAN_GLOBAL_DEVICE_.NAME, // IpFileName
2 GENERIC_READ | GENERIC_WRITE, // dwDesiredAccess
3 FILE_.SHARE_READ | FILE.SHARE_WRITE, // dwShareMode
4 NULL, // IpSecurityAttributes
5 OPEN_EXISTING, // dwCreationDistribution
6 0, // dwFlagsAndAttributes
7 NULL // hTemplateFile
8);

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Work in Progress

» Rewrite the component framework in Limbo

> leverage typed channels, ADTs
» time as a first-class notion

» Port the existing simulator to Inferno
» graphics is a pleasure to work with

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Work in Progress

» Distributed clock synchronization
» implement IEEE 1588 !

» Support 9P over embedded network protocols
» EtherCAT, Ethernet Powerline, CAN bus . ..

Standard for a Precise Clock Synchronization Protocol for Networked
Measurement and Control Systems

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

Finally...

Questions?

Kulkarni, Himebaugh and Johnson 4th International Workshop on Plan 9

