Living under a Poison Tree

Erik Quanstrom
quanstro@coraid.com

ABSTRACT

Within the last year, the transition to the nupas [1] mail system has been
completed at Coraid. In that time, the number of messages stored and
the size of inboxes has increased by an order of magnitude. Yet the
amount of storage required on the WORM has been reduced by an order
of magnitude and the amount of core required has been reduced by an
order and a half. Most of these gains have been realized through the
caching strategies made possible by the mdir(6) format. Much smaller
but significant optimizations and bug fixes in the last year have enabled
the current level of performance.

Introduction

The introduction of nupas has been largely successful. Most heavy users access the sys-
tem through IMAP. The system is accessed daily through Apple Mail, Firefox, Opera and
Outlook. Last year at this time, both mail servers ran out of memory on a daily basis.
With many very large inboxes, nearly 1GB of data per day was added to the WORM.
Opening large mailboxes was understandably accompanied by a delay on the order of
minutes. Today, though 14 new users have been added, less than 5% of available mem-
ory is used by upas, and the elimination one of the two mail servers is being considered.
Only 100MB of data per day is added to the WORM. Logging now accounts for more of
the dump than email. The largest mailboxes can now be opened in a few seconds. This
is summarized in Figure 1.

O total total largest box largest box dump core O

U date messages MB messages MB blocks MB S

||

0 0

00808 12491 1143 975 249 123000 5386

F200908 157075 8307 15587 790 14500 482 F
Figure 1

While this improvement would not have been possible without the move to caching facil-
itated by moving to the mdir format, some surprising secondary limitations were found
and some bugs were found due to faulty assumptions.

Hash Handling

The initial roll out of nupas was somewhat disappointing. The memory savings was less
than expected. Several users were using a few hundred megabytes of core each. Part of
this was explained by email clients such as Apple Mail keeping several connections open
at once and the increase in IMAP-capable mobile devices. Even so, it was typical for
users with large inboxes to have 50MB instances of upas/fs immediately upon opening
the inbox. Leak(1) was unable to complete a scan of these processes. It was deter-
mined that linearly increasing the allocation for two large memory blocks in an inter-
leaved fashion with other small allocations was causing pathological memory fragmenta-
tion. Switching to exponential allocation fixed leak, but revealed that there was no
memory leak.

In addition, opening large mailboxes was taking an inordinate amount of cpu. Profiling
indicated that the file hash table handling accounted for the bulk of startup time. Since
the scheme for handling files was to keep them in a hash table. Each file needed a hash
entry. Since each message part has 30 standard files for the message body, header,
subject and so on, a message with n subparts will require 30n+1 hash entries. Each
one of these entries is allocated with malloc(2). A 5000 message mailbox would have a
minimum of 150000 hash entries, but likely at least double that number. Since there
were 1227 buckets, the load factor a on the hash table, or the average number of
entries per hash chain, would be at least 122 [2], [3].

Given that the load factor is so large for such a small mailbox, and since it seems that
building the hash table is expensive, it may be worth analyzing how long we expect
building this table to take. Interestingly this topic does not appear to be explicitly dis-
cussed in [3]. If we consider adding a single element to a hash table, it’s not hard to see
that computing the bucket by hashing a predetermined set of strings with a fixed value
is bounded by a constant time. Since we do need to guard against duplicates, adding an
element to the hash chain, will take O(1 +at/2) time [4]. Since

Z 1+ (1+40() ’

we can expect that loading the hash table will take O(a?) time.

There are two potential solutions to this problem. Either replace the current lookup with
one of sub-linear time and/or reduce the number of hash entries. The latter seemed
like the best first approach as this could also address excessive memory use. And,
given the poor big-0 performance of our algorithm, any reduction of nodes will result in
quadratic speedups.

The hash entries for the 30 standard files that populate each message directory were
replaced with a single dummy entry entry “xxx.” The file portion of the QID was stripped
out. Since all message directories are numeric and all of the standard files begin with a
letter, we simply lookup the dummy entry when asked to lookup file starting with a let-
ter. If the dummy entry is found, the given name is translated to a file id by linear
search of a static table. The file id is added back to the returned QID. This change
reduces the number of allocated hash entries from 30n+1 to n+1. Likewise the new
load factor a' = a/30 and the time to build the hash table will be
O(a’?/4) = O0((a/30)?) = O(a?/900). While this approach fails to address the qua-
dratic behavior, it does address the memory use and provides three orders’ of magni-
tude headroom.

It is important to note in this analysis that IMAP clients such as Apple Mail open each
mail box every minute or so to check for new messages. If there are none the mail box
is immediately closed. Thus the time it takes to open a mailbox is one of the most
important benchmarks in our system. Also, due to the frequent mailbox scanning with-
out closing the IMAP connection, reducing memory fragmentation is vitally important.
Based on the experience with leak, a few small items (e.g. mime types) that were sure
to be reused were freed when mail boxes are closed. This reduced the total long term
memory use for upas/fs driven by Apple Mail by an order of magnitude.

Last year’s upas/fs was benchmarked against this year’s for a 15200-message mailbox.
One further significant change has been made: the number of hash buckets has been
increased to 1999. Both the time and memory usage to start and to run nedmail(1) are
listed. The results are summarized in Figure 2.

O start start ned ned O

U date time (s) core (MB) time (s) core (MB) S

[}

O O

200808 72 67 233 133 [

(200908 0.40 17 3.3 17 A
Figure 2

While memory use is still somewhat disappointing, start time has improved by two
orders of magnitude. Since memory use is predicted to be linearly related to the num-
ber of messages, it is envisioned that this issue will not need to be revisited until
30000-message mailboxes become commonplace, when it is expected that the O(a?) of
hash addition will again begin to be important.

Index Scanning

The scanning of the mailbox index relied on the order of messages in a mailbox being
stable. A missing or extra message near the beginning of the list of messages (assumed
to be in date-of-delivery order) could result in a large number of messages being
deleted from the index and the mailbox. Initially it was assumed that this case was not
important, since non-stable sorting would indicate a bug in the particular mail box
code. Unfortunately a few bugs were found that deleted mail. It also proved a difficult
problem to tackle for mdir mailboxes since they are sorted by date from the UNIX from
line, since the order of delivery to the mdir is not available. Directory order is not stable
when deletions are possible, since deletions on the file server simply mark a slot free
and new files fill the first free directory slot. Yet new messages that are older than
some (or even all) existing mail may be added.

The solution employed was to keep an AVL tree keyed on the SHA1 checksum of each
message. This allowed to matching of existing message structures to index entries to
be robust in the face of ordering problems or races between the index and mailbox.
The AVL tree was also employed to detect duplicate messages. Duplicate messages and
other rejected messages are now silently dropped rather than deleted.

Avoiding Mail Box Scans

For very large mailboxes, scanning the mailbox can be fairly resource intensive. Since
mailboxes tend to be open many times, it is desirable to avoid duplicating this effort.
To accomplish this, each mail box type may save a line of mailbox-specific information

to the index. If the mail box is older than the index, then the index is read without con-
sulting the underlying mailbox. For example mdir mailboxes save the QID of the mdir
directory to the index. If the QID matches the QID saved in the index, the index is con-
sidered “newer” than the mdir.

When the mail box scan is avoided, the difference for our 15200-message mailbox is
0.4s for the cached case versus 3.3s for the cached case.

Mdir Scanning; Upas/fs Scanning

The decision to sort mdir mailboxes by date continues to be problematic. Since new
messages must be given a higher message number than older message ids, it is possi-
ble for messages to be out of numeric order. This requires all upas/fs clients to be
aware that relative message ids may not be stable as they are with a tradition mbox for-
mat. It would be possible to declare the order of messages in the index to be the the
order of messages in a mailbox. However the same problem would arise if the index is
regenerated for any reason. This would seem to be an unwise dependency.

Sorting has been a particular problem for imap4d due to the quixotic definition of the
imap UID and sequence numbers. IMAP uses two different numbers to as handles on a
message. The UID is an almost permanent identifier assigned in increasing order.
Sequence numbers are only valid during a session and take on values from 1-n, where
n is the number of messages in the mail box. The difficult requirement is that if
uiD, < UID, then one must have seq, < seq,,. This puts the sorting of IMAP (by UID)
in conflict with the sorting of upas/fs (by date). Rather than trying to maintain two con-
flicting sorted indexes, the same AVL tree solution used for index scanning was
employed. Other clients such as nedmail(1) simply read the entire message directory
and resort.

Further Work

Clearly there is a lot of room for further work. Much of the further work mentioned in
[1] remains undone. There is ongoing work to multithread the the file server interface
of upas/fs. It seems that replacing the current hashing strategy needs to be in the
medium-term plans. The AVL tree strategy seems fruitful and should be reused by mdir
and nedmail to avoid the need to read and sort the mail directory as a whole. Sorting of
mailboxes continues to be a sticky wicket. IMAP search and listing performance needs
some reevaluation.

Credits

This work wouldn’t have been possible without the patience of my coworkers at Coraid.
In particular Brantley Coile and Ryan Thomas deserve special mention for suffering
through many buggy versions. In addition Sape Mullender has reported many important
bugs and included invaluable snapfs(4) debugging snapshots. Finally Gabriel Diaz
Lopez De la llave has provided a lot of valuable feedback through his GSOC work related
to adding multithreading to upas/fs.

Abbreviated References

[1] E. Quanstrom “Scaling Upas”, proceedings of the International Workshop on Plan 9,
October, 2008.

[2] E. Quanstrom “(n)upas update”, email to the 9fans list, May 21, 2009,
http://9fans.net/archive/2009/05/106.

[3] D. E. Knuth, The Art of Computer Programming, vol 3., 2d ed., 1998.

[4] G. H. Gonnet, “Expected Length of the Longest Probe Sequence in Hash Code Search-
ing”, Department of Computer Science, University of Waterloo, CS-RR-78-46, 1978.

