Torrent

Mechiel Lukkien

mechiel@xs4all.nl

ABSTRACT

The torrent* project contains a BitTorrent program and tools for cre-
ating .torrent files and “‘tracking’’ a torrent. It is written in Limbo, for
Inferno. Torrent/peer connects to many peers and exchanges data
blocks with them. It serves a styx/9p interface from which progress can
be read and its behaviour influenced. This interface is used by
wm/torrent, a Tk program that visualizes progress and allows
stopping/starting and setting bandwidth limits.

Introduction

This report briefly introduces the BitTorrent protocolt, explains the functionality and
styx interface of torrent/peer, the user interface provided by wm/torrent, implementa-
tion details, and concludes with a discussion and future work.

BitTorrent

BitTorrent is a popular peer to peer protocol for file exchange over the internet. A
.torrent file references a tracker, SHA-1 hashes of pieces of the data that are
exchanged, and file names belonging to the data. An info hash (SHA-1 again) can be
derived from this information and is the unique identifier of the torrent file. Peers use
the info hash to determine whether they are talking to a peer that exchanges the same
data. The tracker helps peers find each other, returning lists of peers interested in the
same data. The tracker is the only centralized component used during data exchange,
though decentralized trackers also exist nowadays. The SHA-1 hashes in the torrent file
allow verification of the received data. The file names in the torrent have no role in the
protocol: multiple files are treated as a sequential stream of bytes during data
exchange. All pieces (except the last) are of the same fixed size, typically between 64KB
and a few MB. Smaller blocks of a piece, of typically 16kb, are exchanged at a time.
Once all blocks for a piece have been received, the piece is verified and from then on
exchanged with other peers. The torrent file is encoded in the “bee’’ format, a simple
BitTorrent-specific format that can encode lists, dictionaries, integers and (octet)
strings.

An implementation connects to the tracker periodically to fetch a list of peers, and then
dials those peers (unless enough peers are already connected). It also listens for incom-
ing connections from other peers. It keeps track of the pieces each peer has, and keeps
all peers informed of all the pieces it has itself. A connection to a peer has two bits of
state on both the local side of the connection and the remote side: whether each side is
interested (i.e. wants a piece the other side has), and whether it has choked the

* Torrent, http://www.ueber.net/code/r/torrent

t The BitTorrent Protocol Specification, http://www.bittorrent.org/beps/bep_0003.html



connection (i.e. is not willing to send blocks). If the local peer is interested in the
remote peer, and the remote peer has not choked the local peer, requests for blocks are
sent to the remote which the remote peer answers with blocks.

To keep TCP working reasonably (with slow-start, back-off, etc.), only a limited number
of peers are selected for sending data to, i.e. unchoked. The set of peers to send data
to is evaluated periodically. The best performing peers are (kept) unchoked, all others
are choked. Performance is measured by the peer’s contributed bandwidth. A random
peer is unchoked once in a while, hoping it will appreciate our bandwidth and recipro-
cate. This simple mechanism finds good peers to exchange data with.

The pool of connected peers is kept healthy too. In torrents with many peers (large
“swarms’’), replacing existing connections with new peers ensures good piece distribu-
tion and gives new peers a chance to get data.

These are all standard BitTorrent mechanisms. There are many details an implementa-
tion has to care of. For example, it has to defend against freeloading peers, or peers
that send blocks with wrong data (whether deliberate or not).

Torrent/peer

Over the years, various extensions have been added to the protocol. Not all have been
implemented. The feature that makes peer different from most implementations (but
not btfs!) is its styx interface. This interface is probably not generally useful, but it
does give a nice separation of the protocol details and controlling the process and show-
ing its progress. Perhaps a web interface will be implemented in the future though.

The following example illustrates the current styx interface. Be warned that it will likely
change.

% mount {torrent/peer lenda.torrent} /mnt/torrent
g
% cd /mnt/torrent

% 1ls -1

——rw-rw—rw— M 4 torrent torrent 0 Jan 01 1970 ctl
——r——r—T—-— M 4 torrent torrent 0 Jan 01 1970 files
——r—Tr——1r—— M 4 torrent torrent 0 Jan 01 1970 info
—Tr—Tr—T1r— M 4 torrent torrent 0 Jan 01 1970 peerevents
—r—Tr——T— M 4 torrent torrent 0 Jan 01 1970 peers
——Tr—Tr—r—— M 4 torrent torrent 0 Jan 01 1970 peersbad
——r——r—T1r—— M 4 torrent torrent 0 Jan 01 1970 peerstracker
——Tr——r—r—— M 4 torrent torrent 0 Jan 01 1970 progress
—Tr—Tr—T— M 4 torrent torrent 0 Jan 01 1970 state

% cat info

fs 0

torrentpath glenda.torrent

infohash £52fe0191737elc3e6e86f0081fa52d182el12a70
announce http://localhost/announce

piecelen 65536

piececount 10

length 654030

% cat files

spaceglenda300.jpg spaceglenda300.jpg 654030 0 9
% echo start >ctl

%

Commands can be written to the ctl file, e.g. to start/stop data exchange, or to set
bandwidth limits. A read on ctl returns the values of configurable parameters. Info
returns properties from the torrent file. State returns most of the progress (band-
width rates and totals of the transfer) and e.g. the number of connected peers. Files
lists the files described by the torrent file. Each line consists of a path (sanitized by
default, so no spaces and other shell and text-selection unfriendly characters), total size



in bytes, and first and last piece that has bytes for this file. Peers, peersbad and
peerstracker give information about the connected peers, a list of misbehaving
peers, and addresses of peers that are known but not necessarily connected.
Peerevents returns events about peers, one line per event. For example for newly
connected peers, or a change of interestedness or chokedness, or when peers say they
completed a piece. Progress returns events about progress peer itself is making, e.g.
when a new piece is complete, or when checking the hash for a piece failed.

Wm/torrent

The styx interface exported by peer is used by wm/torrent to keep track of progress
and allow setting of controls. Torrent shows information such as percentage of pieces
completed, current upload and download rates, total number of bytes uploaded, down-
loaded and remaining, the number of connected peers. Two ‘‘piece bars’ visually indi-
cate which pieces have been downloaded and to what extend pieces are available at
other peers. Another view shows information per peer, including their progress, net-
work address, software version identifier, and upload/download rates and totals. A
third view shows a list of “‘faulty’”’ peers, those that did something wrong such as send-
ing bogus BitTorrent messages or invalid data.

Torrent/track, torrent/create and torrent/verify

Track is a very simplistic tracker. It can be configured to serve a preset list of info
hashes, or any info hash that comes along. It runs as an scgi program.

Create creates a .torrent file for a list of files that are to be exchanged. The tracker
must be specified as well. Create logically divides the files into pieces and calculates
their SHA-1 hashes for inclusion in the torrent file.

Verify calculates the SHA-1 hashes of files specified in a torrent file and compares them
with the hashes in the torrent file. It prints which pieces are complete.

Implementation
The obligatory line counts:
2824 9173 70618 ./appl/cmd/torrent/peer.b

139 444 3022 ./appl/cmd/torrent/create.b
100 256 1922 ./appl/cmd/torrent/verify.b
719 2317 16644 ./appl/cmd/torrent/track.b
214 583 3432 ./appl/lib/bitarray.b
1007 3080 20351 ./appl/lib/bittorrentpeer.b
346 1316 8852 ./appl/lib/bittorrentpeer.m
1076 3889 25111 ./appl/lib/bittorrent.b
1305 4267 30196 ./appl/wm/torrent.b
39 166 1002 ./module/bitarray.m
132 531 3443 ./module/bittorrent.m

7901 26022 184593 total

Future work

The BitTorrent protocol has only ten very simple protocol messages. The file format of
the torrent files is simple too, and the responses from the tracker are in the same for-
mat. Most of the work consists of managing all the connections, making sure all peers
that are willing to transfer data receive requests, in a pipelined fashion. For each peer
we have to keep track of the pieces they have, which of those we still want, which of
those have not yet requested, etc. Preventing abuse plays an important role too. Thus,
the most complicated part is all the accounting, keeping all the information in a consis-
tent state and quickly accessible (at low cpu cost).



Decisions are made continuously: which piece to request next, which peers to unchoke.
These decisions can be made with “smart” algorithms, e.g. based on previous actions
by the peer. However, that greatly complicates the accounting and is susceptible to
abuse. A simple and robust approach is to pick one of the options at random. It is
cheap to execute, requires little bookkeeping and typically less prone to abuse.

There are many things that need improvement, listing them here would be too much
(and too detailed). Some of the immediate or larger items on the list:

Quality of peers should be taken into account more when requesting blocks. This
provides robustness against malicious peers that send wrong data. A mechanism
to divide clients by whether they have delivered a full piece, delivered blocks of a
completed piece, are of unknown quality, or have mistreated us in the past has
been implemented partially.

Torrent/peer should handle multiple torrents at once. Currently multiple peer’s
and wmy/torrent’s have to be started. This is not necessarily bad. However, trans-
ferring multiple torrents in a single peer allows for better traffic and connection
optimisation, i.e. getting more bandwidth in return for given bandwidth. For exam-
ple the n*m best peers over all m torrents can be unchoked, instead of the best n
for each torrent.

UDP trackers, as opposed to the default HTTP over TCP trackers, might be useful,
though mostly to lower the load on trackers.

Http seeding extensions, for retrieving pieces from a web server when no peers
with those pieces are available. It is not clear how commonly this is used though.

“Magnet URIs’’ and the BitTorrent extensions protocol message could be imple-
mented. It allows exchange of torrent files among peers, given en info hash. This
makes BitTorrent more decentralized.

Pieces are currently always requested in random order. Rarest-first piece selection
could be implemented, to ensure better piece availability. It requires more
accounting though, and is susceptible to manipulation.

All pieces from the torrent file, thus all files specified in the torrent file are down-
loaded by torrent/peer. Support for selection a subset of the files may be imple-
mented.

Testing is also a challenge, for example to test whether an anti-abuse measure works
requires an abusing peer. Even though the protocol is simple, there are still lots of cor-
ner cases that need testing.



