File indexing and searching for Plan 9

Francisco J Ballesteros
Laboratorio de Sistemas
Universidad Rey Juan Carlos

ABSTRACT

In Plan9 most resources are provided as files, including regular on
disk stored files. When the set of files grow, it is important to be able to
quickly locate files based on their contents. This paper describes the set
of tools documented in tags(1), which provides file indexing and content
based searching for Plan 9, using a file system to provide the search
interface.

1. Introduction

It is common today in most systems to be able to search files based on their content.
MacOSX has the Spotlight tool, Google supplies a file indexing and searching tool for
various systems including Windows and Linux, and UNIX has since long ago tools like
whereis and Glimpse [2] that permit searching files by name or by content. There are
many other content-based tools. See [4] for a survey or [3] for tools used for string
matching.

The native version for Plan 9 of such tool was missing, although APE can be used to
port others from other systems. In fact, Seft [1], another search tool, is an APE port
already available at sources. We describe here our second attempt at providing content
based file searching for Plan 9, after early experiments in Plan B with adb(1), a simple
tag database.

Content based searching requires solving two problems: (1) indexing file contents
and (2) searching the indexes to execute queries. How both things are done depends on
the type of searches to be supported. The tools described here provide only exact word
matching. Approximate text matching would require different techniques [3] and has
not been considered yet.

For exact word queries, it is important to be able to extract the words of interest
(probably all) from a file. The appropriate way of doing this is specific for each type of
file. Therefore, the indexer has to be modular and permit the addition of specific word
extractors for different file types.

Regarding searching, there is a compromise between maintaining the database in
memory, leading to fast searches and to high memory consumption, and maintaining
most of it on disk, which leads to slower searches but minimizes memory consumption.

Another issue is that on Plan 9, as of today, it is not uncommon for a user to have
multiple terminals. At the very least, it is very common (by design) to have multiple ter-
minals sharing a central file server and several CPU servers. This may be exploited to
use (otherwise idle) machines to help in file searching, while keeping most of the termi-
nal resources available for other uses.



It is also important for the indexer to support quick updates to the index, or
changes to the file system would not be able to get incorporated quickly to the data-
base, and users would miss most recent changes, as made to the file system. Consider-
ing that many searches refer to things just made, this is an issue.

In Plan 9 users rearrange their namespaces so that they incorporate possibly many
file trees, from different servers. However, an indexing tool must keep file paths in a
consistent way for all name spaces. Also, it is important to run the indexer utility close
to the file server, to reduce I/0O latency. As a result, the search database is best associ-
ated to a particular file tree (at a single file server), instead of being associated to a
namespace. In that way the database used determines the file tree where the files
reside, and paths are not ambiguous anymore (because they are not a function of the
client’s name space).

2. Data structures

The set of tools described in tags(1) builds upon two data structures:
1 A trie that maps words to file qids.

2 A hash table that maps gids to file names.

We keep the index and file names apart because Qids are more compact. Qids are used
as values in the trie, instead of using strings. This permits the Trie to be more compact,
which is important because the memory occupied by the database is significant. The
more compact it is, the better. This can be done because the database refers to a file
tree at a particular server, to keep paths meaningful as said before.

The trie is stored in a single file, e.g., /1ib/sys.trie.db, and is fully read on
main memory by tools that use it. The hash table is kept at a separate file, e.g.,
/1lib/sys.hash.db, and is also entirely read onto main memory by the tool sup-
porting it.

All words used to lookup files are kept in the trie. This means all words contained
in text files, and all words extracted from other file types. As an aid, each file is consid-
ered to contain the path elements present on its name. This allows, for example, looking
for sys and src to focus a search on system source files.

Each node in the trie represents a prefix (or a full word). The root node corre-
sponds to the empty word. A trie node is described by the following structure:

typedef struct Trie Trie;
typedef struct Tent Tent;

struct Tent {

Rune T;
Trie* t;
};
struct Trie {
Tent* ents; // ents[i].r are runes for children
int nents; // ents[i].t are children
int aents; // # of ents allocated
uvlong* vals; // values for this prefix
int nvals; // # of values in use
ulong* svals; // small values (fit in a long)
int nsvals; // # of small values in use

};

A node t maintains pointers (in t—>ents[i].t) to child nodes that represent longer
words sharing the prefix represented by t. Each link to a child node is labeled by
t—>ents[i].r, the rune that has to be added to the prefix represented by t to



obtain the prefix represented by the child.

For example, the prefix a representing either the word a or all the words starting
with a would be represented by the child t—>ents[i].t of the root node, provided
that t—>ents[i] .r in the root node contains the rune a. Figure 1 depicts an exam-
ple trie keeping the words (and their prefixes) hi, hello and so.

ents[l.r |h|s
ents[].t

ents[l.r [e i/ \ ents[].r E

ents[].t ents[].t

ents[].r
ents[].t

valsfl [ ] valsll ||
ents[].r /
ents[].t
ents[].r
ents[].t

vals[] E

Fig. 1: A trie with three words: hi, hello, and so.

The trie is used to map words to Qids. Each node t that (besides being a prefix) repre-
sents a valid word (a key for a set of files) contains in t—>vals an array of Qids. For
example, in the figure, the two nodes holding the o rune would point to further trie
nodes, used just to contain the Qids for files tagged with hello and so. In the same
way, the entry for i in the left child of the root node would point to another trie node
used just to contain the Qids for files tagged with hi. All nodes in the figure are simi-
lar, but we do not show empty arrays, for clarity.

Both ents and vals arrays are grown dynamically, as more space is needed. For
ents, nents records the number of entries used and aents records the number of
allocated entries (because in the future we might allow to delete entries in this array).
For vals we grow the array in chunks of Incr nodes (a constant in the program) and
there is no need to keep avals. The array t—>svals is an optimization, discussed
later.

Note that this implementation leads to a flat trie, whose depth is only as long as
the longest word. Other implementations would use inner trees (mixed within the trie)
to keep children conceptually contained at a single node in the trie.

We thought that it was best to keep the entire database in memory, to permit fast
searching. That is considering that memory is cheap and that we may also be able to use
the memory of a shared machine to keep the database there. Nevertheless, the database
must be kept as compact as feasible while on memory to avoid consuming all the mem-
ory available. Therefore, using a single array to keep all the pointers to the children



(and all the values) seemed a sensible thing to do. It permits a compact representation.

Both arrays are kept sorted, which means that searches on them are still logarith-
mic. Additions to the trie are not that frequent and they do not require fast response
times, compared to searches (which are interactive).

Many Qids fit in a Long value, and the trie stores them in svals instead of doing
it in vals. That way we use half the size for such Qids, at the expense of maintaining
two more words at each node in the Trie, to maintain the array. We tried both with and
without this optimization and the difference is about 50 Mbytes of main memory for our
system database. In the future, if many Qids use the high long of their path, the two
extra words may turn into a penalty. Searching time is not affected by this optimization.

The data structure mapping Qids to paths is a simple hash table. There is not
much to say about it, other than showing the structure itself:

typedef struct Ent Ent;

struct Ent {
uvlong qid;

char* path;

Ent* next; // in hash
};
Ent* hash[Nhash];

Searching for lines matching the given query relies on a double search. First, the
inverted index implemented by the trie reports the files relevant to the query. Second,
grep(1) is used to search such files and show relevant lines.

One point of interest in both data structures is that neither one supports removal
of entries. Removing qids from the trie would require iteration over all the nodes in the
trie, which is utterly expensive. Instead, the tool searching the hash table checks that
files being looked up still exist, before printing their paths. If they are removed they are
simply discarded.

When a file no longer contains a tag, it may still be indexed by the tag. In any case,
the tag is related to the file (because it did contain it). The search interface relies on
grep(1) to show lines that match the query on the files retrieved from the database. If a
tag is no longer in a file, no lines will be shown for such tag. This makes the problem of
old tags mostly irrelevant.

From time to time, (e.g., once per month), the database may be regenerated to
clean it up. That is the price for avoiding the time to remove entries while re-indexing
files.

3. Tools

The software for indexing and searching files is split into different tools, as described in
mktags(1). This is their synopsis:

mktags [ —d ] dbpath file...

[ DB= dbpath ] looktags [ -n ] tag...
tagfiles [ —d ] triepath file...

rdtrie triepath [ tag... ]

ghash [ -dv ] hashpath [ gid... ]

ghash [ -dv ] —a hashpath [ gid path... ]
ghash [ -dv ] —c hashpath file...



tagfs [ —abcD 1 [ —s srv] [ -m mnt] triepath

The first two programs are Rc scripts providing the primary user interface. The other
programs provide the actual software for indexing and searching.

Mktags creates a database named dbpath that maps from tags (words) to file
names. Only given files are indexed (including subdirectories as well). Any word in the
path name for a file, and any word contained in the file (for most files) becomes a valid
search tag for the file. The resulting database is made of two files: a trie and a hash
table. The name of the trie has the suffix . trie.db and the name of the hash has the
suffix .hash.db. The path to the database files without their suffix is considered the
name of the database.

By convention, there is a system wide data base at /1lib/sys (that is,
/1lib/sys.trie.db and /lib/sys.hash.db ) and a per-user data base at
$home/1ib/Suser (that is, $home/1ib/$user.trie.db and
$home/1ib/$user.hash.db).

Looktags searches the system and user databases for files that match the query
specified by its arguments. By default, only file names are printed. Flag —n instructs
looktags to run grep(1) to print some of the matching lines.

A query is made of lists of tags separated by the ‘“:” character, each as a distinct
argument. A file matches the query if it is associated to (contains) all the tags in one of
the lists. For example,

looktags a b c : d e

would search for files either matching all of a, b, and ¢ or matching all of d and e.

Looktags can be instructed to use a different database by defining the DB environ-
ment variable to contain a list of names for the databases to be used (without any file
name suffixes).

Qhash maintains a file name hash table in the database. This data structure is used
to translate Qids into file names.

The first invocation syntax (without using flags —a or —c) can be used to retrieve
path names for the given gids in the command line. This is used by looktags to obtain
paths for matching files. Under flag —a the program ghash adds the following argu-
ment pairs (each with a gid and path) to the hash file. Under flag —c ghash retrieves
Qids and (absolute) path names for file(s) mentioned as arguments (recurring for direc-
tories), and adds them to the database. This is used by mktags to create/update the
hash file in the data base.

In memory databases

Rdtrie can be used to inspect and query the Trie in the database. The Trie data structure
keeps all the known tags in a trie, maintaining a list of Qids for each tag.

Without any tag argument in the command line, rdtrie reads and prints the entire
Trie file, trie. Otherwise, rdtrie reads trie and then interprets any following arguments
as a query. Qids matching the query are printed in the standard output. Looktags relies
on this program to execute its query.

To speed up searches, the trie part of the database can be kept in memory using
tagfs. For example, if the database is named /a/b/dbname, looktags searches first for a
file named /srv/dbname.tagfs (to reach a server holding an in-memory version of
the trie part of the database), and uses it when available. Otherwise, looktags looks for
the host identified by $search in the ndb(6) database. Should it be found, looktags
imports its /srv directory to look for /srv/dbname.tagfs on it. This is used to share
an in-memory database among several machines sharing a network. Only as a last
resort would looktags read the database by itself to execute the query.



Tagfs can also be used to update a Trie, besides being an alternative to rdtrie to
perform searches. The directory served by tagfs contains a ct1l file that can be read to
gather statistics about the Trie and can be written to modify the trie. A write of the
string sync writes the in-memory database back to its file. A write of the form

tag gid tag...
adds tag to gid in the trie (but does not update the on-disk database).

A query can be made by creating a file, writing the query into it (being careful to
separate different tags and : characters with white space), and then reading from the
same file the list of qids that match the query. The query file is removed as soon as it is
closed after having read from it.

Modularity

Tagfiles tags every file mentioned as an argument (recurring for directories) using the
Trie stored in the given trie argument. Mktags relies on this program.

For each file indexed, tagfiles uses every word in its path name as a valid tag to
search for the file. Also, tagfiles looks at the file name suffix and uses file(1) to deter-
mine the type of file and pick a particular indexing method. For text files, tagfiles reads
entire file contents and associates each word contained in the file as a tag to search for
the file. For other types of file, tagfiles tries to execute external programs to extract the
list of tags for each file. Should the appropriate external program not exist, tagfiles
would still try to index the file as text when appropriate.

The following programs may be executed by tagfiles to obtain tags for files. They
are expected to write tags for the file given as an argument, one per line:

J tagc to tag C source.

. taglimbo to tag Limbo source.

. taghtml to tag HTML files.

. tagman to tag manual pages

o tagrc to tag Rc scripts

. tagtroff to tag roff source.

. tagdoc to tag Microsoft Office documents, including rich text format.
. tagpdf to tag Adobe PDF files.

. tageps to tag Adobe EPS files.

. tagps to tag PostScript files.

4. Examples of use

Create the per-user and the system database:
; mktags $home/lib/$user $home /mail/box/$user/msgs
; mktags /lib/sys /cfg /rc /sys

Look for files mentioning either list append or queue append, then repeat que query but
using an alternate database kept at /lib/other.trie.db and
/1lib/other.hash.db:

; looktags list append : queue append
; DB=/1lib/other looktags list append : queue append

Add (or update!) tags for files under /usr/prof to the personal database:

; tagfiles $home/lib/$user.trie.db /usr/prof
; ghash —-c $home/lib/$user.hash.db /usr/prof



Place the system database in memory so that Llooktags can be faster, and add the tag
yoyoba to file with qid 8345f

; tagfs /lib/sys.trie.db
; echo tag 8345f yoyoba >/mnt/tags/ctl
; echo sync >/mnt/tags/ctl

Make the system database at whale.lsub.org available to other hosts: First,
edit /1lib/ndb/local to contain search=whale.lsub.org for the network
entry. Second, at whale:

whale% tagfs /lib/sys.trie.db
whale% chmod a+rw /srv/sys.tagfs

Now from other hosts, looktags may use Whale’s in-memory database.

5. Heuristics

The most important heuristic is the one used by tagtext in tagfiles to determine which
pieces of text are words. In particular, words of less than three characters are ignored.
Also, pieces of non-blank text of more than 50 characters are considered as non-text
(see for example encoded attachments in mails). The remaining text is parsed to locate
alphanumeric words to be used as tags.

6. Performance

We have not really made any performance measurements for the tool. In part because it
is good enough to fit our needs. Nevertheless, we include some concrete measures here
to give a glimpse of its behavior. The implementation contains 1876 lines of C code (not
counting library functions used).

An important measure is the size for the database. This is what ps says for our sys-
tem database and that for the author:

; rx whale ps | grep tagfs
elf 383 0:27 0:13 148736K Pread tagfs
nemo 915 55:36 13:42 236808K Pread tagfs

The personal database includes all mail besides indexing more than 300 Mbytes of
(mostly text) files.

A search for files including tags and doc as tags takes 3.58 seconds (real time), and
reports a total of 31 files in the system:

; time looktags tags doc
/mail/box/nemo/msgs/200102/a.997/text
/usr/nemo/doc/os/9intro/chl0.ms
/usr/nemo/doc/os/9intro/index
/sys/src/cmd/tags/tagfiles.c

0.28u 0.06s 3.58r looktags tags doc

Using flag —n to ask for a listing of matching lines in these files (besides searching for
them) takes 3.95 seconds of real time.

Adding nemo as another required tag makes the request take 1.66 seconds of real time.

All these measures are not implying anything regarding performance. They are not
controlled experiments, but it can be seen that the set of tools behaves well enough for
actual use.



References

1.  O. Kretser and A. Moffat, SEFT: a search engine for text, Software—Practice & Expe-
rience, 2004.

2. U. Manber and S. Wu, GLIMPSE: A tool to search through entire file systems, USENIX
Winter Technical Conference, 1994.

3. G. Navarro, A guided tour to approximate string matching, ACM Computing Sur-
veys 33,1 (2001), 31-88.

4. J. Zobel and A. Moffat, Inverted files for text search engines, ACM Computing Sur-
veys, 2006.



