
Devsd Refresh

Erik Quanstrom
quanstro@quanstro.net

ABSTRACT

The Plan 9 sd(3) interface provides uniform access for disk-like devices
for Plan 9. Its interfaces have proven fairly robust. With no incompatible
changes, features like full 48-bit (ATA) and 64-bit (SCSI),
SGPIO[1]/SES�2[2] enclosure management lights, and centralized SCSI
CDB to ATA translation have been straightforward to add. Nonetheless,
sd assumes fixed rather than hot-swappable drives and uses a intricate
drive lettering scheme that may require some client-visible changes in
the future.

Introduction

Although sd(3) stands for storage device, the name belies its SCSI roots. Nonetheless, it
has proved quite robust in the face of changing requirements and easily extensible. The
addition of several new hot-pluggable SATA and combined mode SATA/SAS controllers
has stretched the model a bit. New drives and controllers already can break the 32-bit
LBA barrier. Certainly this will be common in the future. Revisions to the ATA standard
have introduced tricky new power-saving modes. We will outline the changes that were
necessary to support these new drivers, the changes to the drivers themselves and what
needs to be addressed in the future.

Raw ATA Support

While Plan 9 allows user-level commands to send raw SCSI commands directly to devices
through the raw file, there is no such facility for ATA. Drives using the ATA command
set get by by emulating a small set of SCSI commands. As outlined in the ATA au
Naturel[3] paper, support for raw ATA commands was added without disturbing existing
SCSI functionality. This required an extra ataio function and added about 20 lines of
code to the generic device.

Full LBA Support

Full LBA support has been limited at several points to 32 bits. This limits drive size to
2TB with 512-byte sectors. With drive sizes currently at 2TB and chipset-level RAID that
can combine drives, this is becoming a serious limitation. While sdaoe(3) sidesteps
many of these issues, the other drivers have not been addressed.

These 32-bit limitations are in part due to the translation to SCSI in pc/sdscsi.c.
The current ATA drivers all translate IO requests into SCSI CDBs and then translate them
from SCSI to the original LBA and number of sectors. So SCSI limitations also limit ATA.
Finally, ATA drivers are unable to translate READ/WRITE (16), required for LBAs



larger than 32 bits, back into LBA format.

The initial step, generating the 16-byte IO commands when necessary was taken several
years ago. However, drivers using scsionline were still limited to 32-bits due to the
use of GET CAPACITY (10). It was straightforward to detect overflow and issue a
16-byte command. As we consider the drivers, the translation from CDB to LBA in the
various ATA drivers (sdaoe excepted) do not translate READ/WRITE (16). Rather
than fix them all individually, a new function sdfakescsirw was added which converts a
CDB back into an LBA, number of sectors and if it is a read or write request. This fixed
the 32-bit limitation and removed a number of duplicate (and not entirely compatible)
copies of the same code.

For many drivers, it does not make sense to translate from LBA to CDB and back again.
The sdiahci driver was modified to take advantage of this. A new ahcibio function was
written that uses the LBA and sector count directly. In the case of ATAPI devices only, a
SCSI CDB is generated using scsibio. For sdaoe the new aoebio is even simplier. Since
the AoE driver does not support ATAPI, a CDB is never generated.

Unfortunately, a rio function must still be provided to support basic scuzz(8) functional­
ity. This limits the amount of code that can be eliminated.

Lights

SES�2 and SGPIO are standards defining how to interact with a drive enclosure. Features
vary widely by enclosure and HBA. It is possible to control up to three lights per drive (a
green activity light, an amber locate light and a red fail light). In addition, a number of
sensor readings may be available.

Rather than add add-hoc functionality to sd, it was decided to pass SGPIO/SES�2 com­
mands through via control files. It would have been possible to simply reuse the
sdXX/ctl file, but this would have made detecting and parsing the status of the lights
cumbersome. Instead, a facility to add extra control files to a device was added. A sin­
gle function was added to register a new control file.

For SGPIO/SES�2 lights, a led control file was added. Reading this file returns the cur­
rent slot state. This is one of normal, rebuild, locate, spare, or fail. Writing a new state
to the led file sets that slot to the given state. For example

chula# cat led
normal
chula# echo fail>led

sets the red fail light on red and turns on the backplane alarm. To reset the alarm,

chula# echo normal>led
chula# cat led
normal

It is envisioned that this functionality could be harnessed by fs(3) or smart(8) to auto­
maticly announce the state of drives.

Since SGPIO/SES�2 also support temperature and fan sensors, additional control files
could be added to support them.



Autosense

There are two ways for SCSI commands to return data. The method used depends on
the HBA and the SCSI transport protocol. Early SCSI standards required the REQUEST
SENSE to return sense (error) information. Autosense returns the sense data along
with the response in a transport-dependent manner. When autosense is used, unso­
licited REQUEST SENSE commands will return no sense, as sense data is returned
only once. SAM�3[4] makes autosense mandatory. However the protocol provided by
the raw file is not autosensing; it requires an explicit REQUEST SENSE. To get
around this, sd uses the flag SDnosense to instruct the driver to act as if autosense
had been disabled. Since this forces an additional burden on most modern drivers, the
technique used by sdmylex of saving sense data until a REQUEST SENSE command is
issued was moved to sd. Conversion to the new system remains unfinished as no work­
ing machines capable of driving available and supported cards were available for test­
ing. The old sense-data saving code will simply be unused.

Bits

A few odds and ends were also changed. According to the sd manual page, the 10th
unit attached to controller 0 should be named sd0a. Unfortunately, it was named
sd010. In this case, the manual was considered authoritative and the code was �fixed.�

It had also been impossible for anyone other than eve to read the sdctl file. Since the
list of of controllers is not a security concern, the ability for eve to grant looser permis­
sions was added in line with other sd-generated files. In addition, the error messages
were sharpened so that setting unsettable information with wstat is flagged as an error.

There was also a vendor-specific MODE SENSE response which could be used to return
the IDENTIFY (PACKET) DEVICE data. It appeared that this wormhole was
unused, except by scuzz(8). It was removed since this data is accessible more conven­
tionally via atazz(8).

The sdctl file is now generated so that there is exactly one line per drive letter. For­
merly, a line was generated only if the driver provided an appropriate rtopctl function.
Sd now supplies a basic entry for drivers lacking this function. This simplifies unit enu­
meration by spelling out each controller prefix. For each prefix, only 16 units need to
be probed.

Drivers

The following drivers have received significant work, or are new: sdaoe, sdata, sdiahci,
sdloop, sdorion, sdmv50xx. The sdloop (loopback) and sdorion drivers are new. All
were converted to use libfis. Print statements were audited so drivers properly iden­
tify themselves in console messages.

The Sdata driver now uses the standard sdsense, sdfakescsi and sdfakescsirw functions.
Additionally, a bug that caused Intel ICH south bridges to hang the system on boot was
fixed.

The AHCI driver was updated to revision 1.3 of the specification[5] and power manage­
ment support was added. Support for sector sizes other than 512 bytes was added.
Disabled ports, staggered spinup, device discovery ATAPI devices have all been fixed.
PATA bridged drives such as SATA Disk on Modules (DOMs) are now supported. Several
AMD SB6xx bugs were fixed and support for VIA, nVidia, and JMicron devices was
added.



Further Work

While all of the changes to sd could use further polish, there are two areas that have
been ignored: hot-pluggable devices and drive enumeration. Hot-pluggable devices are
a rough fit in sd because they may appear at any time and disappear at any time. The
parallel SCSI drivers only create units where a drive is detected at boot time. The IDE
driver takes the same approach. Since it is assumed that drives are not hot-pluggable,
this makes sense. (As long as the IDE driver is actually presenting PATA drives, that is.)
For SATA and SAS, this approach doesn�t work. Either device directories must be cre­
ated dynamicly, or a directory for each port must be created on boot. The later
approach was taken, though this may need revisiting in the face of SAS expanders and
SATA port multipliers, which may have tens of thousands of ports.

Another consequence of hot-pluggable drives is that it�s hard to know how long to wait
at boot for drives to appear. In a large system with many drives, it�s not uncommon for
drives to straggle in several minutes after the operating system gains control. Clearly it
would be unacceptable to wait two minutes for each drive. But if that drive contains
your root filesystem, you need to wait. The current kludge is for 9load to use a heuristic
algorithm to spin up the drives it sees. This seems to be working well in practice, but
does not appear to be a satisfactory solution.

The verify and online model for bringing a unit online seem at odds with hot-plug
devices. An experimental version of sd was built that combined the initial pnp, enable
and verify functions into pnp. This allows drive discovery to take place in parallel and
reduces the amount of state the controller needs to carry. The online function was
replaced with ready. This function returns 1 if the drive is ready for access. The pro­
cess of bringing the drive online is done asynchronously by a background process. As
this is already a requirement for hot-pluggable drives, this requires no addition code.
While this approach has worked well and simplified the code, it still doesn�t answer the
question of when to wait for the drive to be ready and for how long.

Currently sd picks meaningful drive letters. On a pc, sdC0 and sdD0 are, as expected,
the primary IDE master and the secondary IDE master. However, if these same drives
are not given the IDE legacy IO ports, they would be labeled sdE0 and sdF0. Other
ATA drives start with drive letter �E.� SCSI drives start with the first controller being
named sd0. The new Orion driver can control either SATA or SAS drives. The only solu­
tion in the current scheme is to start with a new primary letter � �a� was chosen. My
primary development machine has drive letters a, C�F, and l. This is a somewhat
unwieldy situation. It may make sense to enumerate units sequentially. So instead of
having units sda0 and sdE0 one would have sd00 and sd01. If it is worth preserving
the ability to associate drive letters with controllers, sdctl can continue to provide the
mapping for interested applications. Dynamicly configured drives could read their
assigned letters back.

Abbreviated References

[1] Serial GPIO, published online at
ftp://ftp.seagate.com/sff/SFF−8485.PDF.

[2] SCSI Enclosure Services � 2 (SES�2), published online at
http://www.t10.org/ftp/t10/drafts/ses2/ses2r19a.pdf.

[3] E. Quanstrom �ATA au Naturel�, proceedings of the International Workshop on Plan 9,
October, 2009.

[4] SCSI Architectural Model � 3 (SAM�3), published online at



http://www.t10.org/cgi−bin/ac.pl?t=f&f=sam3r14.pdf.

[5] Advanced Host Controller Interface (AHCI) 1.3, published online at
http://download.intel.com/technology/serialata/pdf/rev1_3.pdf.


