
How to Make a Lumpy Random-Number Generator

Michael A. Covington

Institute for Artificial Intelligence
The University of Georgia

mc@uga.edu

ABSTRACT

Normally, random-number generators are designed to produce numbers with a
uniform distribution. The sum of uniform random variates has a bell-curve-
shaped distribution. Using bell curves like wavelets, individual uniform random
variables can be summed to produce arbitrary nonuniform distributions. The
result is a simple, customizable non-uniform random-number generating algo-
rithm that has been prototyped on Plan 9 and is equally suitable for other
computing environments, including very small embedded systems.

1. Problem definition

Normally, random-number generators produce uniformly distributed values. However, nonuni-
form random numbers are needed for a number of purposes. In simulation, one often needs
random numbers conforming exactly to the observed or theoretical distribution of an input
variable, in order to produce an authentic distribution of simulated output [1].

In other situations, the requirements are much less precise, but random numbers with a
preference for certain values or ranges are still desired. Examples include equalizing wear on
machinery by having a machine return to approximately but not exactly the same position
each time; introducing “dither” to avoid unwanted synchronism with external processes;
and correcting for nonuniformity in some process downstream from the random number
generator.

Traditionally, nonuniform distributions are generated by transforming the output of a uni-
form random-number generator, often using elaborate floating-point computations. In this
paper I outline an alternative that is especially suitable for the latter set of cases, where
quick computation is more important than hitting a specified distribution exactly.1

2. Approach

As Fig. 1 shows, the sum of n uniform random variables is an (n−1)th-degree polynomial
approximation to a normal distribution (bell curve) ([2], p. 22). For practical purposes, the
curve with n=3 is smooth enough.

Thus, one can generate a bell curve distribution by merely generating three random numbers
each time, adding them, and dividing by three.

Bell curves can be used like wavelets to synthesize more complex curves. For example, the
distribution in Fig. 2 was synthesized from a nonzero baseline mixed with three bell curves
by the code in Fig. 5.

1This research was done for CORAID, Inc. (www.coraid.com) while the author was on summer leave
from the Institute for Artificial Intelligence, University of Georgia (www.ai.uga.edu). The author thanks
Brantley Coile for posing the initial question from which this project arose.

Figure 1: Histograms of the sum of n uniform random variables, from 10 000 000 trials.

Fig. 1, continued.

Figure 2: Histogram of custom random number generator in Fig. 5.

int genrand(int bmin, int bmax, int rmin, int rmax, int n) {
// Generalized random number generator;
// sum of n random variables (usually 3).
// Bell curve spans bmin<=x<bmax; then,
// values outside rmin<=x<rmax are rejected.
int i, u, sum;
do {

sum = 0;
for (i=0; i<n; i++) sum += bmin + (rand() % (bmax - bmin));
if (sum < 0) sum -= n-1; /* prevent pileup at 0 */
u = sum / n;

} while (! (rmin <= u && u < rmax));
return u;

}

Figure 3: Generalized random number generator (sum of n uniform random variables).

Bell curves lack one property of wavelets [3]: they do not have an average value of zero, and
in fact they never dip below zero at all. Thus, adding another bell curve to a synthesized
function can only raise it, not lower it. For histograms, this is not a serious objection
because the height of the curve has only relative significance; the whole histogram can be
raised or lowered by generating more or fewer random numbers.

To understand that bell curves can be used like wavelets, consider some arbitrary distribution
f(x), some approximation to it g(x), and the difference g(x)− f(x). Either the difference
is a constant, in which case it can be filled by mixing in a uniform distribution, or else it
has one or more “humps.” Fill one of the humps with a bell curve sized to fit it, and you
have a better g(x) and a new g(x) − f(x) from which that hump is missing. Repeat as
desired until the fit is sufficiently close.

3. Implementation and testing

To put this idea to the test, the all-integer algorithm shown in Fig. 3 was coded in C and
executed under the Plan 9 operating system [4] on a 1.87-GHz Pentium processor. Each call
to genrand with n=3 took, on the average, less than 0.01 microsecond. The histograms in
all the illustrations were made with this function, by downloading its output to a PC and
graphing with Microsoft Excel.

The arguments of the function specify two ranges, the range that the bell curve should span
and the range of values acceptable as output. Thus, it is possible to compress or truncate
the histogram (Fig. 4). Naturally, if a substantial part of the bell curve is discarded, CPU
time is wasted, but this is still a quick way to generate a partial bell curve.

In the algorithm, if the sum of individual random variables is negative, it is decremented
by n−1 before performing the integer division by n. The reason is that without this step,
there are more ways to get 0 than any other number. For example, if n=3, then not only
do 2/3, 1/3, and 0 truncate to 0, so do −1/3 and −2/3. By shifting all negative results
farther negative by −2/3, we get the latter two to truncate to −1.

Fig. 5 shows how the synthesis of a distribution is done. This particular function has a 40%
chance of choosing the first call to genrand, a 30% chance of choosing the second, a 20%
chance of choosing the third, and a 10% chance of choosing the fourth. Thus, the bell
curves are mixed in the desired proportions.

One limitation inherent in this technique is that the random numbers need to fall within in

Figure 4: Generated third-degree (n = 3) bell curve spans any specified range of values.
Bell need not fit within desired range; in that case, values outside range are generated and
rejected.

int customrand(void) {
switch (rand() % 10) {

case 0:
case 1:
case 2:
case 3:

return genrand(0,1000,0,1000,1); // flat baseline
case 4:
case 5:
case 6:

return genrand(-400,300,0,300,3); // large peak beyond left edge
case 7:
case 8:

return genrand(600,900,600,900,3); // peak at 750
default:

return genrand(0,700,0,700,3); // very low, broad peak at 350
}

}

Figure 5: Sample code to interleave calls to genrand with different parameters, to combine
multiple bell curves into the single distribution shown in Fig. 2.

a range considerably smaller than that of the underlying built-in random number generator.
In Plan 9 C, rand produces integers from 0 to 32 767 inclusive. When taken modulo 1000,
as in the examples, these are not quite uniform because (for example) there are 32 ways
to get 767 but only 31 ways to get 768. This nonuniformity is just visible in the topmost
curve in Fig. 1 but is usually negligible. If the modulus were 10 000 or 20 000, it would be
serious.

References

[1] P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation, 2nd edn. New York:
Springer-Verlag, 1987.

[2] L. Devroye, Non-Uniform Random Variate Generation. New York: Springer-Verlag,
1986.

[3] I. Daubechies, “Wavelet transforms and orthonormal wavelet bases,” in Different
Perspectives on Wavelets, I. Daubechies, Ed. (Proceedings of Symposia in Applied
Mathematics, 47.) Providence, R.I.: American Mathematical Society, 1993, pp. 1–33.

[4] Thompson, Ken (1990) “Plan 9 C compilers.”
http://plan9.bell-labs.com/sys/doc/compiler.pdf

