Ircfs and wm/irc

Mechiel Lukkien

mechiel@xs4all.nl

ABSTRACT

Irc, internet relay chat, is a popular chat protocol. Ircfs(4) is an irc
client that maintains a connection to an irc server, and exports irc func-
tionality through the styx/9p protocol. Wm/irc is a Tk program that pro-
vides a user interface to the file system interface. Ircfs and wm/irc have
been used from early stages of development with only a few remaining
features to be implemented and bugs to be fixed.

Introduction

Ircfs is typically run on a computer with a stable internet connection, with its files
exported over styx. Another machine then mounts the file tree and accesses it using
wm/irc. Ircfs+wm/irc was intended to replace the common screen+irssi set up. It has
already done that for me and turned out to be an improvement: /rcfs is a more generic
and reusable irc client, with no user interface logic in it. Wm/irc is a simple user inter-
face program, not (very) specific to irc. Because the two programs are separate, they
have been written and can be debugged and started independently. The user interface
is run locally and thus always responsive.

Ircfs and wm/irc are both written in Limbo. More information including the code is
available on the ircfs home page* and in the manual pages ircfs(4) and wm—irc(1).

This report continues with an overview of ircfs, followed by a description of wm/irc’s
features and concludes with an explanation of design decisions and ideas for improve-
ments.

Ircfs
Let’s start with an example:

% mount {ircfs freenode} /mnt/irc

% cd /mnt/irc

% echo ’connect net!irc.freenode.net!6667 mjlo’ >ctl
% 1ls —1

d-r—-xr-xr-x M 2 ircfs ircfs 0 Sep 28 15:45 0
——w——w——w— M 2 ircfs ircfs 0 Sep 28 15:45 ctl
——Tr——r—Tr—— M 2 ircfs ircfs 0 Sep 28 15:45 event
——r——1r—1— M 2 ircfs ircfs 0 Sep 28 15:45 nick
——Tr——1r—71r— M 2 ircfs ircfs 0 Sep 28 15:45 pong
——rw-rw—rw— M 2 ircfs ircfs 0 Sep 28 15:45 raw

% cat nick
mjlo

The ctl file accepts plain text commands ranging from connecting and disconnecting

* lrcfs, http://www.ueber.net/code/r/ircfs



to joining channels. Nick returns the current nick of the user. Raw allows reading and
writing of raw irc commands (not normally used). Pong is a file that returns the delay
of irc server responses to irc ping commands periodically sent by ircfs. Ircfs users can
use this to detect disruption of the irc connection between ircfs and the irc server, and
the styx connection between wm/irc and ircfs. Event returns a line for each change of
the user’s nick, and added and removed channels/users (due to join or part com-
mands, or queries from other users). Reads on raw, pong and event block until data
becomes available.

Each irc channel and user is represented by a directory. These directories directly map
to windows in wm/irc. Again an example:

% echo ’'join #inferno’ >ctl
% cat 2/name
#inferno

% 1s -1 2/

———wW—w——w— M 2 ircfs ircfs 0 Sep 28 15:45 2/ctl
——rw-rw—rw— M 2 jrcfs ircfs 0 Sep 28 15:45 2/data
——Tr——1r—1r— M 2 ircfs ircfs 0 Sep 28 15:45 2/name
—Tr——1r—71— M 2 ircfs ircfs 0 Sep 28 15:45 2/users
% echo hi! >2/data

The example above shows how to join a channel and say something. Note that this is
normally done in wm/irc, with the command /join #inferno, after which the mes-
sage new 2 would be returned on the event file, and a new window for directory 2
would be opened by wmy/irc.

A special directory O always exists, e.g. the irc server message of the day. Each direc-
tory has a ctl file for writing commands (all those accepted by the top-level ct1 file,
plus some only for channels/users), a data file for reading and writing text, a name
file for reading the name of the channel/user, and a users file from which changes of
user presence can be read, i.e. users joining, leaving or renaming. Reads of the files
data and users block until data becomes available. Lines written to the data file are
sent to the channel/user as text. Lines other users write, or meta messages such as
users joining/leaving or a change of the topic, are read from the data file with a charac-
ter prefixed to indicate the type of the line (text, meta information). The users file
returns lines when users join/leave the channel. This is used by wm/irc to provide tab
completion for names.

Wm/irc

Wm/irc is a user interface consisting of three parts: On the left a list of names of
channels/users, for each of which wm/irc maintains a windowt. In the middle/right a
text area that holds text from the data file, showing the text of the currently selected
window. At the bottom is a text field for typing text and commands.

Wm/irc can handle multiple ircfs file trees, connections to multiple irc servers. Multiple
file trees are typically exported using one styxlisten(1) and mounted on the machine
running wm/irc. Note that Inferno’s styxlisten and mount(1) can authenticate and
encrypt the connection.

Wwm/irc can be started with multiple paths of file trees as arguments. Paths can be
added and removed during operation. For each file tree, the status window (special
directory 0) is opened for executing commands on, e.g. connect to get started. New
windows are created for new channels/users, as indicated by the continuously read
event file.

The term window is misleading, it is just a Tk text widget.



Wm/irc stays informed about the user’s own name for each irc file tree, and will high-
light windows with lines containing the user’s name. Additional patterns to highlight
can be specified on the command-line. Unread windows with highlighted text have an
= before their name in the list on the left, unread non-highlighted text a +, meta mes-
sages a — and delayed status windows are marked with a ~. In the text area itself, high-
lighted text has a yellow background.

Wm/irc has keyboard shortcuts for navigating among windows, e.g. to the next window
with a highlight or the previously selected window. Clicking on the name in the list
switches to that window.

Text can be copy-pasted with acme-like chording. A plumb button allows selected text
to be plumbed. Searching in the text area (reverse by default, from most to least recent)
is done from a dedicated text field. Matches are marked by an orange background.

A line typed in the text field is written to that window’s data file when return is
pressed, unless it starts with a single slash. A single slash makes the line a command.
If the first word of the line (minus slash) is win, the remainder is interpreted by wm/irc.
Otherwise, the line minus slash is written to the window’s ctl file. For example, /win
quit causes wm/irc to quit while /quit causes quit to be written to the jrcfs ctl
file, causing it to disconnect from the irc server.

Implementation details
Line counts:

1656 ./appl/cmd/ircfs.b
1446 ./appl/wm/irc.b
397 ./appl/lib/irc.b
125 ./module/irc.m
3624 total

The library parses and packs irc messages, converting between strings and adt’s repre-
senting a message. Ircfs uses this library and otherwise just maintains the irc connec-
tion and the state of all channels/users, continuously handling irc and styx messages.
The functions for handling a styx message, handling an irc message and handling writes
to ctl files are the largest, followed by the code maintaining the data structures,
including history for all channels/users and accounting for blocked styx reads.

Discussion and future work

Ircfs and wm/irc are separate programs with distinct functionality, but together provide
an easy to use irc client. Wm/irc has practically no irc-specific code and the ircfs styx
file tree is not very irc-specific either. Wm/irc could be reused for other instant mes-
sage protocols, perhaps requiring small modifications to the styx interface. The styx
interface has evolved during development of ircfs and wm/irc, each time adjusting the
behaviour of one program to the needs of the other while keeping the code and mecha-
nisms simple.

Ircfs only maintains a single irc connection. To connect to multiple servers, just start
multiple ircfs’es. Of course, wm/irc does support multiple ircfs’es, and multiple ircfs’es
can be exported on a single styx connection.

Most irc clients reconnect to the irc server when disconnected. Ircfs does not. First, |
haven’t needed that feature since the machine | run ircfs on has a very stable internet
connection (the machine | run wm/irc on does not however). Second, it can be tricky to
determine whether a disconnect should be followed by a reconnect. Constantly recon-
necting is rarely appreciated by server operators. Perhaps a third reason is that such a
feature would require quite some code, especially if channels must be joined automati-
cally too.

Channels and users are represented by a directory in ircfs’ styx interface. The names of



those directories are unique numbers, not the names of the channel/user. | cannot
recall the original reason for this choice, but there are problems with directories named
after the channel/user. First, irc is case insensitive for channel and user names (with
quirks for special characters), so there is no unique or even a canonical name for a chan-
nel. Second, users can change their name, requiring a change of the directory name,
making the path of open file descriptors unusable for e.g. reopens or opens of the ctl
file given a previously opened data file. In short, the semantics of such directories are
tricky while the semantics of numbered directories are not.

Not all irc commands have been implemented, e.g. those used by irc server operators. |
have not needed those commands, and because documentation of irc commands is
often incomplete and/or does not match practice, it makes little sense to write code
them.

Wwm/irc could be made to start up faster. Many files are opened and the Tk interface is
updated a lot while starting. More files could be opened concurrently at start up, and Tk
updates batched. However, ircfs does not distinguish existing state from new state to
users of its files, so wm/irc cannot know when the start up phase ends. It would also
require quite some code, while recently added more concurrent file opening has
improved start up time already.

A larger issue that will require some redesign: Ircfs and wm/irc have no good way to
know whether some lines from data files have been read by the user. This sometimes
causes messages to be overlooked. | have not yet found a satisfactory solution to this
problem. Currently ircfs keeps track of which data has been read from a data file. Data
that has been read before is returned in multiple lines per styx read request, new data
one line at a time. When wm/irc receives multiple lines in one read, it knows those lines
have been read before and will never highlight these lines. This mechanism is inaccu-
rate for two reasons. First, some irc directories contain only one line and thus will
always appear unread and potentially cause highlights. Second, and more serious, any
running wm/irc, or any other user of the jrcfs, will cause data to be marked as read.
There is currently no direct relation to human interaction with e.g. wm/irc and data
being marked as read.

Wm/irc opens all windows by default. In same cases, e.g. when on a low-bandwidth
connection, it is not desirable to open all windows or real all history. Wm/irc has an
option to keep all windows closed by default. The wm/irc commands to open, close and
list (unopened) windows have not been used a lot and might need improvement. Ircfs
also has a mechanism to limit the amount of history to send: by a wstat(2) that only
sets the 1ength field. This is not a very clean mechanism, and at least too bothersome
to tool-users of the data file, when history must often be ignored.

Connecting to an irc server is done by the connect ctl command (or reconnect to reuse
the last parameters). This styx write for these commands does not return until the con-
nection succeeds or fails. This can take some time since some irc servers stall the con-
nection while verifying it. Wm/irc can handle this now (before this was fixed it would
block the entire user interface), but other users of ircfs might find this behaviour trou-
blesome.

Wwm/irc adds colors and underlines to the editable text areas. Editing sometimes causes
the mark up to be lost or mangled due to how these are configured with Tk. | doubt
this problem has an elegant solution.

Wm/irc allows acme-like chording (in both text(9) area and entry(9) fields, each requir-
ing different code), and plumbing by clicking a button. It is a pity this has to be imple-
mented by wm/irc. It would be nice if this code would be provided as generic Tk func-
tionality.



