Building complex GUIs in Plan 9

Jonas Amoson
jonas.amoson@hv. se

University West
461 86 Trollhattan, Sweden

ABSTRACT

How can non-trivial graphical user interfaces be designed in Plan 9 with-
out them losing their minimalistic style? Different toolkits are discussed,
and a proposal for a tabbed toolbar is suggested as a way to add func-
tionality without cluttering the interface and avoiding the use of pop-up
dialog boxes. A hypothetical port of the GUI in LyX is used as an example.

1. Introduction

The user interface of Plan 9 sometimes confuses newcomers from other systems, as
they are used to grouping user interfaces into being either text-based or graphical, and
Plan 9 is neither or both. It is graphical from the ground up and the mouse needs to be
used all the time, despite the fact that most programs are text based command line
tools and that the system is configured by editing configuration files.

The next discovery is that the graphical programs look quite different from their
cousins on other popular GUIs on X11 or Windows. They are very minimalistic and do
without well-known graphical components such as dialog boxes and buttons with icons.
One reason for this might be an aspiration for a very clean interface where traditional
GUI widgets do not fit in. Another reason could be that all the graphical applications
written so far, being comparatively simple, have not needed much help from menus and
buttons in their interfaces.

This paper tries to shed light on the design of graphical interfaces for Plan 9 appli-
cations focusing on interactive components such as menus, toolbars and dialog boxes.
How does one design an application GUI in Plan 9 that has many functions but still
blends well with the minimalistic look of the system? Existing Plan 9 applications has
been examined in order to rough out a “look-and-feel” style guide in comparison with
traditional WIMP (Windows, Icon, Mouse, Pointer) systems.

Toolkit libraries are the spine of graphical applications, largely defining their
behaviour. The graphics libraries libdraw, libpanel, libframe and libcontrol are presented
and discussed in the context of what graphical components they provide a GUI program-
mer.

To exemplify, a hypothetical port of the GUI for the word processor LyX is dis-
cussed, and a proposal for a tabbed toolbar is suggested in order to keep the interface
clean and to avoid pop-up windows.

Some conclusions are drawn from this work, but the main purpose of the paper is
to inspire discussions on how to design GUIs for applications with somewhat more com-
plex GUI needs, without losing the minimalistic style of Plan 9.

2. GUI philosophy

This is an attempt to outline a style guide for graphical programs in Plan 9 by observing
the current pool of applications in the distribution and also to some extent in the
contrib directory. The first observation is:

Keep the graphical interface as minimalistic as possible, with as few
functions as possible.

This embodies the principle of “The fewer the functions, the easier to use” [1]. If some
functionality is supplied by another program, do not include it in a new program too.
This rule “one tool for each task” or rule of modularity [2] is easier to achieve on the
command line than in a graphical interface, but the plumbing mechanism [3] in Plan 9
might be a way to let the user access functionality of other tools, such as Postscript
previewer, without including extra code for previewing in the application.

There is no need to make everything configurable. Users will accept a well chosen
default, and it makes programs less complex [1].

Maximise the usage of the space in the working window for actual
content.

The windowing system has no title bars, and most applications have no menus or tool-
bars that are visible all the time, but use context menus activated by button 2 and 3 on
the mouse.

A graphical program should stay within the borders of the window it was
started in.

As a graphical program “takes over”’ the screen area of the window from which it was
executed, the user does not get surprised by windows popping up on the screen, and
resizing is fully controlled by the user [1]. As an exception to this rule some programs,
mostly games, automatically change the size of the window to a size that fits the appli-
cation. The changed size persists when the user quits the game.

Popping up secondary windows (such as dialog boxes) is common in GUIs of other sys-
tems, but almost unseen among plan 9 applications. Instead some programs like
acme(1) split the window into multiple frames, using tiling [4, p. 348].

Some programs use scroll-bars if the content of a window (or a frame) doesn’t fit,
whereas some applications simply show as much as fits, eventually forcing the user to
resize the window to be able to access the hidden parts.

Icons (small stylistic pictures) are usually not used on buttons or
toolbars, instead ordinary text is used.

Graphical images are not evil, but text occupies less space, and is often easier to under-
stand [5, p. 168]. An example is the editable toolbar in acme where shortcuts to
commands can be added just by typing.

3. Toolkits

Libraries of GUlI components are often called toolkits and are constructed to ease
application development, so that the programmer does not have to write lots of low-
level graphics code in realising a GUI. Toolkits influence the look-and-feel of an
application, so programs will probably look better together, if they were developed
using the same toolkit.

All programs that use the graphical subsystem of Plan 9 will use libdraw, the basic
graphics library described in draw(2). Libdraw does not provide much help with
widgets, but together with event(2) it is easy to make “mouse button popup-menus”, the
most commonly used interaction component of graphical applications in Plan 9.

3.1. libpanel

The panel library was developed by Tom Duff in order to write the Mothra web browser
[6]. Panel offers traditional GUI components like pull down menus, input boxes, radio
buttons, etc. and has a 3D-look-and-feelt, found in most GUIs today.

Although the look and feel of panel is minimalistic compared to many other 3D
toolkits, it does not blend so well with the style of other plan 9 applications. Libpanel is
not included in the standard distribution (4th edition) of Plan 9.

3.2. libcontrol

The control(2) library developed by Rob Pike and Sape Mullender provides a set of
interactive controls (widgets) using the thread library, thread(2). Each control has its
own thread, and it is possible to send it messages and to receive events from it.
Libcontrol is, to my understanding, the preferred toolkit for new applications with
complex graphical user interfaces.

3.3. libframe

Another library frame(2) provides “frames of editable text in a single font” and is used
by applications like acme and rio(1).

3.4. Toolkit features and use

Table 1 shows the GUI features provided by each of the above described toolkits and
also an estimate of how frequently the libraries are used by applications in /sys/src.

Table 1: Toolkit summary.

Component draw frame panel control
Button X X
Context menu X X X
Pulldown menu X
Slider X X
Text panel X X X
Number of apps in /sys/src 43 5 - 3

4. Case study — LyX

To practically investigate GUI design options for Plan 9, a port of the graphical interface
of LyX, the LaTeX frontend, will be discussed.

“LyX is a document processor that encourages an approach to writing based
on the structure of your documents (WYSIWYM) and not simply their
appearance (WYSIWYG).” [http://www.lyx.org]

LyX was chosen because it has a featureful GUI that simplifies the editing task compared
to using a markup language and a standard text editor. It is also a good example of a
GUI frontend for a text based application.

When porting an application, it is easier to break with the style of the target sys-
tem, than in a fresh design that are built bottom-up. Considerations should be made to
follow the style of the target system, or if needed, carefully extend the style in order to
embrace new types of applications.

t 3D in the sense that shadowed borders give the impression of a raised or depressed button.

4.1. GUI description

To get a grip of the functionality that has to be ported, we start with an overview over
the current graphical interface of LyX. Figure 1 shows a screenshot of LyX running
under Linux, with a document loaded into the editing buffer. The interface consists
top-down of:

e Pull down menu-bar (File, Edit, View, Insert, ...)

e lcon toolbar with buttons for commonly used functions
e Writing area

e Status bar

The writing area lets the user edit text in different fonts, but also handles insets such as
figures, tables and equations. The writing area will not be further discussed in this
paper. The toolbar with buttons also features a pull-down menu for selecting paragraph
types in the document (standard, section, subsection, quotation, ...).

a LyX: [doc/Tutorial.lyx] (read only) —Ox%X

File Edit VWew Insert Navigate Document Tools Hslp

Titla = l-ra (51 L.Jj Q ﬂ];‘(; l.") 4 =
] @G A B @)
=St =2 BE2 Q-

Exercise: Put the various equations in |~
example raw.lyx into display mode,
and see how they're typeset differently.

Exercise: Using various tools you've
learned in this section, you should be able
to write an equation like foot :

logg = =1
fiz) = i £=10

5 [|
Ej L0+ Vit = 1]

4]

2a TR OV oa - e o

Figure 1: Screenshot of LyX running under Linux.

4.2. User interaction

Some of the pull down menus in LyX open dialog boxes (or pop-up windows) with fur-
ther options. Figure 2 shows the box for controlling the layout of paragraphs. Settings
for the document as whole (meta-data) is configured in a dialog box with a tree graph
with sections for each types of configuration.

Most of the pop-up windows in LyX are “stay on top” but modelesst, enabling the

user with a large screen to keep the windows open while editing the document. Other
menu items and menu buttons take direct action in the document, some by inserting a
formula box in the document, that is then further filled out by the user.

- LyX: Paragraph Settings >
Line spacing: | Default | = |

Allgnment

@ Use Paragraph's Default Alignment (Justified)

Justified Leit Center Right

v| Indent Paragraph

Label Width
Longestiabel
Restore oK Apply Close

Figure 2: Paragraph settings in LyX.

4.3. Choice of toolkit

There are many possible routes to take in translating a GUI to the Plan 9 environment.
One obvious way would be to create an interface as identical as possible to its original
form, but the risk is then high that it will feel ill-fitted in its new environment.

For a translation function-by-function, the Panel library would probably be a first
choice, as it has the widest support for traditional GUI concepts like pull-down menus
and other 3D widgets, see table 1. But as mentioned above, using the Control library
would make the application fit better with the overall style of Plan 9, and the discussion
that follows assumes a port based on libcontrol.

4.4. Menus

The graphical interface in LyX is full of menus and buttons, whereas the typical plan 9
program is not, so how does one proceed? Some functionality can be fulfilled by other
tools, and can therefore be left out; this includes Postscript and PDF-export, dialog
boxes for opening and saving files as well as printing.

Menu items that cannot easily be omitted, without compromising the usefulness of
LyX compared to hand editing the LaTeX code, include setting headings as well as inser-
tion of figures and tables.

Context menus (activated by pressing mouse button 2 or 3) could be used for
some functionality, but putting too many menu items, or even sub-level items, in them
should be discouraged [1]. Many users of Plan 9 have also become used to the mouse

1t Modeless as opposed to modal pop-up windows that locks the main window until the user has
closed the dialog box [4, p.355]. Modeless windows that are open all the time are often called tool
boxes.

chording mechanism in acme and would probably wish for similar functionality in other
applications for heavy text editing, reserving the mouse buttons for that purpose.

4.5. The toolbar

A toolbar can be seen as a portion of the graphical interface reserved for commands and
buttons, in contrast to the main working area, in our case the writing area in LyX. The
text editor sam(1) has a window for entering written commands and many frame based
applications such as acme and the web browser abaco(l) have toolbars with text
buttons.

The toolbar is accessed using the mouse, which would be in line with Plan 9 style,
as the system is quite mouse intensive compared to other graphical systems, especially
as keyboard shortcuts are not used much. One drawback with the toolbar is that it easily
gets messy if it is filled with different buttons and options, another negative aspect is
that it wastes available screen space. A proposed toolbar solution for a port of the LyX
GUI will be discussed later.

4.6. Dialog boxes

Dialog boxes are quite common in traditional graphical interfaces found on Unix, Win-
dows or Mac OS, and they are used mostly when the application needs to ask the user
something more in detail, like where to save a file and in what format. Another use for
dialog boxes is for setting preferences, especially in systems where text-based configu-
ration files are avoided at all cost. Dialog boxes have the advantage, compared to tool-
bars, of not occupying screen area when they are not activated.

As dialog boxes are uncommon in graphical programs designed for Plan 9 it might
be desirable to do without them in a port of the LyX GUI. One way could be to sub-
frame the working window whenever a dialogue has to be made with the user, the frame
is again removed as soon as the user is finished with it. The good thing about this solu-
tion is that the application stays within its allocated window area, but the main drawback
is that the editing window has to shrink its size temporarily, which may seem even more
annoying to the user than the opening of secondary pop-up windows. Another sugges-
tion is to reserve a fixed sub-frame for dialogue purposes, avoiding pop-ups and
shrinking frames.

4.7. Dynamic dialog toolbar

If space is to be withheld for a toolbar or for user dialogues, the use of it ought to be as
efficient as possible. One idea is to use a menu-tabbed toolbar much like the Ribbon in
Microsoft Office 2007 [7]. A crude mock-up of how it could look is shown in figure 3.

The idea with the tabbed toolbar is that the user first selects one of the tabs, say
paragraph settings which causes the toolbar to be filled with controls associated with
paragraphs. Reaching a function now requires an extra click on the tab, but only if the
user wasn’t already editing the paragraph settings for some other paragraph in the
document.

5. Conclusions

An outspoken goal of Plan 9 is to keep the GUI simple and clean. This can be accom-
plished by reducing functionality or dividing the tasks into multiple programs, thereby
eliminating the need for more complex Ul structures such as dialog boxes and button
toolbars. When this cannot be done without losing too much of the usefulness of having
a GUI for the application, new directions have to be found.

For GUIs with lots of functionality, as in the word processor LyX, a dynamic dialog
toolbar is proposed as an efficient use of screen space in an attempt to reduce the need
for annoying pop-up windows.

File| [para| [Ins | [poc | [Exit]
align: |[L][cJR] Label width:
Indent: [] Line Spacing:

Exercise: Put the various equations in
example raw.lyx into display mode,
and see how they're typeset differently.

Exercise: Using various tools you've
learned in this section, you should be able
to write an equation like foot :

8T =0
flz) = 1] z=10

E: Loyt \’,-"'—% <0

Figure 3: Mock-up of LyX with a tabbed toolbar.

6. References

(1]

[2]
(3]

[4]

[5]

(6]

[7]

Rob Pike, “Window Systems Should Be Transparent”, Computing Systems, Vol. 1, 3,
pp. 279—296, Summer 1988.

Eric S. Raymond, The Art of Unix Programming, Addison-Wesley, 2004.

Rob Pike, “Plumbing and Other Utilities”, Proceedings of the 2000 USENIX Technical
Conference, pp. 159—170, San Diego, 2000.

Wilbert Galitz, The Essential Guide to User Interface Design, Wiley Computer
Publishing, 2002.

Jeff Raskin, The Humane Interface, New Directions for Designing Interactive
Systems, Addison-Wesley, 2000.

Tom Duff, “A Quick Introduction to the Panel Library”, available online at
http://plan9.bell-labs.com/sources/extra/mothra/libpanel/
panel.pdf

Microsoft Corp., “The Office 2007 Ribbon Overview”, published online at
http://office.microsoft.com

